
buildjs-guide
Release 0.1.0

Sep 27, 2017





Contents

1 Getting Started 3
1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 A Simple Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Tutorials and Screencasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Advanced Topics 5
2.1 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Resolving Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Design Goals 9
3.1 Reusability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Modules 11
4.1 Interleave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Rigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 FindMe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 ResolveMe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Partner Tools 13
5.1 Jake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Volo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 BuildJS Roadmap 15
6.1 Use BuildJS Online . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Indices and tables 17

i



ii



buildjs-guide, Release 0.1.0

The BuildJS Tool Suite has been created to provide a best-of-breed solution for building JS-centric web applications
and libraries. While a large number of build tools already exist in the JS/web space, the BuildJS strive to have a point
of difference through the speed of the tools.

Additionally, whereas most of the other tools are designed as larger applications, the BuildJS suite are designed with
reusability in mind. There are a number of smaller modules that can be used individually, but come together in a
single, convenient tool, Interleave.

BuildJS is a suite of Node.js libraries and command-line tools that can be used together to create a sophisticated and
efficient build process for your JS application or library.

Contents 1

http://nodejs.org


buildjs-guide, Release 0.1.0

2 Contents



CHAPTER 1

Getting Started

To get started with BuildJS, you have two choices. You can either install the tools on your local machine and start
writing builds now, or try it online. This getting started guide focuses on working on your local machine as that is
likely to be the most common use case.

Installation

To install the BuildJS tools locally, you will need to have Node.js running on your machine. If you don’t already have
node running, then head over to the Node.js site and work through the installation process.

If you do have node installed, then let’s start by installing Interleave:

npm install -g interleave

NOTE: On *nix/macos systems you may need to run the above with sudo.

To check that interleave is in fact installed, let’s just ask it for it’s version:

interleave --version

If everything is working fine, you will see the current version of Interleave installed, if not feel free to head over the
mailing list and ask for some help.

A Simple Build

While it’s difficult to illustrate how useful Interleave using a simple example, it will help to understand some of the
fundamental approaches of it and the BuildJS tool suite.

For our simple example, we will look at some code that makes use of the String.trim function. Now while this function
is available in most browsers, it’s not available in all so we should probably include a shim to ensure our code works
as expected.

3

http://nodejs.org
http://nodejs.org
https://groups.google.com/forum/#!forum/buildjs
https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Global_Objects/String/Trim


buildjs-guide, Release 0.1.0

Our very simple code would look something like:

// shim String.trim for browsers that don't support it
if (! String.prototype.trim) {

String.prototype.trim = function () {
return this.replace(/^\s+|\s+$/g,'');

};
}

function sayHello(name) {
console.log('Hello ' + name.trim() + '!');

}

Now, let’s move the shim into a file of it’s own to keep our file as “clean” as possible:

//= shims/trim

function sayHello(name) {
console.log('Hello ' + name.trim() + '!');

}

In the code above, the significant line is the //= shims/trim comment. In the BuildJS stack, single-line comments
that have an equals character right after the single-line comment start characters is a Rigger directive.

While we focus primarily on JS code in our guide, the directives can also be applied to CSS (/*= foo */) and
precompiled languages like CoffeeScript (#= foo).

To be completed

• include information on using remote includes

• include information on using Rigger aliases

Tutorials and Screencasts

While the BuildJS tool suite doesn’t have a great deal of online resources yet available online, the following are
definitely worth a look if you are looking to get started using parts of the BuildJS suite.

AMD Build With Grunt And Rigger

Derick Bailey has produced an excellent tutorial and screencast which covers using Rigger, grunt the grunt-rigger
plugin to create a Backbone plugin.

http://www.watchmecode.net/amd-builds-with-grunt

4 Chapter 1. Getting Started

http://twitter.com/derickbailey
https://github.com/cowboy/grunt
https://github.com/DamonOehlman/grunt-rigger
http://www.watchmecode.net/amd-builds-with-grunt


CHAPTER 2

Advanced Topics

Interleave is a very powerful tool and is designed to provide both web application and library developers functionality
that will make their life easier. This section of the documentation provides guides on how to use aspects of Interleave
and the BuildJS tool suite to do this.

Packaging

One of the awesome features of Interleave is that is can be used to generate different module specific (CommonJS,
AMD, etc) versions of your library from a single source file. This is not the default functionality of Interleave, but can
be enabled by specifying a --wrap option when running your build.

One of the primary reasons to consider using Interleave’s packaging is to enable to reuse other library code without
having to get stressed about implementing module specific require, define, etc calls to include the required
libraries. This is something that Interleave will take care of for you in the packaged files.

To specify a dependency, you can simply use the FindMe module requirement syntax:

// req: underscore as _

or to request a particular version:

// req: underscore 1.3.x as _

A Packaging Example

Let’s work through a small, somewhat contrived example of a library that is designed for ‘fonging’ (a term from the
movie A Knight’s Tale). Now, fong.js is going to need underscore to operate correctly, so we’ll need to include a
// req: comment:

// req: underscore as _
function fong(crowd) {

// find valid, fongable targets

5

http://wiki.commonjs.org/wiki/Modules/1.1
https://github.com/amdjs/amdjs-api/wiki
http://www.imdb.com/title/tt0183790/


buildjs-guide, Release 0.1.0

var targets = _.filter(crowd, function(target) {
return (target.name === 'Chaucer' || target.annoying) &&

typeof target.kick == 'function';
});

// kick each of the valid targets
_.invoke(targets, 'kick');

// return the kicked targets
return targets;

}

While this is an extremely trival and contrived example it helps to demonstrate a few key points:

• There are no CommonJS require statements in the library to include underscore.

• There are no export mechanisms (globbing, module.exports or AMD define) to expose the functionality of this
module.

• The code is not wrapped in a closure, thus you might think the generated code would horribly pollute the global
scope (in a more complicated example).

Building our Packages

Building our appropriately packaged, distribution files is very simple:

interleave build src/*.js --wrap

Using the --wrap option with no arguments instructs Interleave that you want to generate packages for the common
package types (amd, commonjs and glob). If you would like to generate only some of these package types you can
specify --wrap=amd,commonjs or something similar.

AMD

define('fong', ['underscore'], function(_) {
function fong(crowd) {

// find valid, fongable targets
var targets = _.filter(crowd, function(target) {

return (target.name === 'Chaucer' || target.annoying) &&
typeof target.kick == 'function';

});

// kick each of the valid targets
_.invoke(targets, 'kick');

// return the kicked targets
return targets;

}

return typeof fong != 'undefined' ? fong : undefined;
});

6 Chapter 2. Advanced Topics



buildjs-guide, Release 0.1.0

CommonJS (Node)

var _ = require('underscore');

function fong(crowd) {
// find valid, fongable targets
var targets = _.filter(crowd, function(target) {

return (target.name === 'Chaucer' || target.annoying) &&
typeof target.kick == 'function';

});

// kick each of the valid targets
_.invoke(targets, 'kick');

// return the kicked targets
return targets;

}

if (typeof fong != 'undefined') {
module.exports = fong;

}

Globbing

// req: underscore as _
(function(glob) {

function fong(crowd) {
// find valid, fongable targets
var targets = _.filter(crowd, function(target) {

return (target.name === 'Chaucer' || target.annoying) &&
typeof target.kick == 'function';

});

// kick each of the valid targets
_.invoke(targets, 'kick');

// return the kicked targets
return targets;

}

if (typeof fong != 'undefined') {
glob.fong = fong;

}
}(this));

Resolving Dependencies

To be completed.

2.2. Resolving Dependencies 7



buildjs-guide, Release 0.1.0

8 Chapter 2. Advanced Topics



CHAPTER 3

Design Goals

The BuildJS suite has been built with the following goals:

Reusability

To be completed.

Portability

To be completed.

Speed

To be completed.

9



buildjs-guide, Release 0.1.0

10 Chapter 3. Design Goals



CHAPTER 4

Modules

There are a number of modules that make up the BuildJS Tool Suite. Each of these modules has a number of config-
uration options and APIs for working with that particular tool. This section of the guide is designed to provide the
information required to “dive deep” into any of these tools.

Interleave

If BuildJS was a band, then Interleave would be the frontman. It’s likely to be the only tool that you actually need to
install, as other parts of the suite will wired in as needed.

Installation

If you are working with Interleave for standalone command line usage, then it is recommended that you install it
globally using the -g option:

npm install -g interleave

In cases where you are working with Interleave for a more complicated build and are bringing in friends such as Jake
to help out, then you should probably include it in a package.json devDependencies section instead.

Source Code

https://github.com/buildjs/interleave

Rigger

To be completed.

11

https://github.com/buildjs/interleave


buildjs-guide, Release 0.1.0

Installation

npm install rigger

Source Code

https://github.com/buildjs/rigger

FindMe

To be completed.

Installation

npm install findme

Source Code

https://github.com/buildjs/findme

ResolveMe

To be completed.

Installation

npm install resolveme

Source Code

https://github.com/buildjs/resolveme

12 Chapter 4. Modules

https://github.com/buildjs/rigger
https://github.com/buildjs/findme
https://github.com/buildjs/resolveme


CHAPTER 5

Partner Tools

Jake

To be completed.

Volo

To be completed.

13



buildjs-guide, Release 0.1.0

14 Chapter 5. Partner Tools



CHAPTER 6

BuildJS Roadmap

Use BuildJS Online

This feature is coming soon, but suffice to say because the BuildJS suite has been built following Node’s async
recommended approach this is possible :)

15



buildjs-guide, Release 0.1.0

16 Chapter 6. BuildJS Roadmap



CHAPTER 7

Indices and tables

• genindex

• modindex

• search

17


	Getting Started
	Installation
	A Simple Build
	Tutorials and Screencasts

	Advanced Topics
	Packaging
	Resolving Dependencies

	Design Goals
	Reusability
	Portability
	Speed

	Modules
	Interleave
	Rigger
	FindMe
	ResolveMe

	Partner Tools
	Jake
	Volo

	BuildJS Roadmap
	Use BuildJS Online

	Indices and tables

